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‘ ABSTRACT 1

A method for the auiomatic differentiation of computer functions |
(subroutines) written in a high level language is discussed.

: A theory is developed to show that most functions that arise |

in applications can be differentiated automatically. It is shown how

one can take a FORTRAN function (subroutine) and, with the aid of a

precompiler, obtain a FORTRAN subroutine that computes the original

function and its desired derivatives.

Implementation of two types of differentiation is described:r C-

1) Xutomatic Taylor series expansion of FORTRAN programs, . 7 |

"'2) Automatic Gradient calculation of FORTRAN functions. [
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AUTOMATIC DIFFERENTIATION OF COMPUTER PROGRAMS
1. Keder
Introduction
The use of reccurrence relat'ons to compute derivatives is not a new
idea. We can trace this idea back as far as 1932 when it was used to com-

pute the Emden functions by means of Taylor series expansion by J. R. Airy
(See [l]). This idea has apparently been rediscovered many times. In 1964

R. E. Moore [7] showed how one could automatically get Taylor series expan-
sions of FORTRAN -like expressions to solve initial value problems. See (1,2,
5,7,8,10]. The automatic computation of partial derivatives was implemented
in 1967 by A. Reiter and J. Gray [l1,14] and later by J. Wertz (12], D. Kuba and
L. B. Rall [13], and R. E. Pugh [9]. These are programs known to us but the
list is probably not complete.

This paper suggests a way to extend the process to functions that can
be written in an algebraic computer language (FORTRAN, ALGOL and so on)
namely: piecewise factorable functions.

The theoretical part of this paper was written because we heard too often
the statement: ""Oh, I believe you can differentiate arbitrary expressions, but
FORTRAN programs ?!''. We then describe the implementation of two types of
differentiation: Taylor series expansion (TAYLOR) and gradient computation
(GRADIENT), via the use of the AUGMENT precompiler [3].

The method described has a few distinct advantages:

1) AUGMENT is a highly portab'e precompiler, therefore with little

work it can be implemented on almost any system.
Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,
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2) The packages give a very easy way to interface with any FORTRAN

program,

3) Any other type of differentiation can be implemented easily (about

two weeks of work).

4) Functions and siibroutines cc:m be ''differentiated" separately,

incorporated into larger systems and used as part of the library.
1.1. Theory.

Let us look at computer programs for the evaluation of numerical
functions that arise in applications.

We use the FORTRAN language but the following discussion
applies to any other high level algebraic language. We ignore the fact
that computers don't really work with real numbers and that library functions
like SIN and COS compute only approximations to functions we have in mind.

We look at FORTRAN subroutines and functions that evaluate some
mathematical functions. We assume that no I/O is involved and that ''random
numbers'' are not used., All such routines have a few features in common:

1) For every set of values of the formal arguments there is a fixed,
finite sequence of instructions executed (provided that these values are with-
in the domain of definition of the function and we use a correct subroutine).

2) If we regard DO loops, logical statements and GOTO statements only
as a convenient tool for defining sequences of instructions, we see that all
such sequences consist of arithmetic operations and calls to library functions.

3) At each step we use only previously defined values.

4) Most of the functions we compute are piecewise differentiable or

actually piecewise analytic,




In order to make the analysis more precise we use an abstract model
for algebraic computer languages, namely the factorable functions. But we
will try to point out the analogy between the model and computer programs
and what the statements about factorable functions mean when we translate
them to facts about computer programs.

We will use subscripts to denote sequences and superscripts to de-
note components of a vector, fi is the ith element in a sequence and t)
is the jth component of a vector t,

1. 2. Definitions.

Let § be a finite set of real functions of one or more real arguments

including the identity function. We call £ the set of basic library functions.

Let f be a map from Rn to Rm. We call f factorable function

if and only if there exists a finite sequence of functions

fl"" ,fk :DC R?= R that satisfy the following conditions:
1 ez Lo
1) fx)=x, f00)=x7, ..., f (x)=x
i et n .l n
2) fk_m_H(X):f(X,...,X),...,fk(x)zf(x’ X
3) for every i,n<i <k, either & ge & >
fi(x) :g(fj %)y wusiy fj (x)) jl,jz,...,js<i,
1 S
or
f(x) =C Cii R,

we call such a sequence a basic sequence and we say that the sequence

fl" 5% ,fk is a basic representation for f .




Remarks.

1) We will not use the properties of the real numbers in most of the discus-

sion to follow, so one could apply the theory to functions over any set.

2) The analogy to FORTRAN is clear. The sequence {fj} that is a basic

representation for f corresponds to subroutine that computes f. The first

n places correspond to the arguments and the last m to the result. The

middle part corresponds to the body of the subroutine. A basic representation

for f can actually be written down by following the path of execution

(assuming no IF and GOTO statements are involved).

3) Many different sequences can represent the same function.

4) It is easy (but important) to verify that for every i,n <i < k, the sequence

fl Sy fi represents fi :

5) It is always assumed that the compositions are well defined, that is:

e £o=taglE 0N e
)

of f (8 fj X}, i fj (x)) is in the domain of g. Only if this

J 2 s
condition is satisfied, can we call f factorable.

js) then for every X in the domain

6) Functions which are identically constant are thought of as functions of

many arguments. The number of arguments depends on the context.

Example:

Here is an example of a factorable function. Let ¢ be the set
{+, -, *, /, **, sin, cos, exp} and f(x) = cos(x) * exp(sin(x)) + sin(x)**2.

A sequence which is a basic representation for f is:

st e




RS ; sy S ) Sy S A o4

1) f {x) =%
1

2) £.(x) = cos(f. (x))

2 |
3) IS(X) = sm(fl(x)!
4) f4(x) = exp(f}(x)i
5) f:’(xb = f3(x> f3(x;
6) f6(x) SRER ) RG]

7) f,',(x) = £, /(x) ¥ fS(X)

6
1.3. Composition,

Let q:Rn» Rk and h:RK» Rm be factorable functions. Let

CIELC PR ’qu+k and hl’h?_" 5.7 ,hLZ

be basicrepresentations for g and h, From these two sequences we con-

struct a third sequence that we call the composition of ql,, s ’qL ik with
1
' : £ -
hl" 2 ,hLZ The sequence is of the form fl’fz’ S ’fL1+L2 where fi =4 5
for 1= l,...,Ll+k, and
¢, iEh. s S=ch Cle R
£ - :
L +i
1 g ((f T, e L EE g (R oh )
bl e TS Litg 2 J) Js
for i=k+l,k+2,...,L2 gel
Remark:
The composition of q,, ..., g Wt hos oe vy 1 is simply
! Lok 1 b
overlaying the first k terms in the sequence hl’ Ly hL on top of the
2

last k terms of the sequence ql, i s qL 2
1+k




k

Let q and h be factorable functions gq: R - R

Lemma 1:

Let . 5. .0 50
1 Ltk 2
f =h(g is a factorable function and the composition of q,--

h
hL

2
The proof follows indirectly from the definitions.

is a basic representation for f.

TR

Proof:

Corollary 1:

substitutions,
Corollary 2: Let ¥ be a collection of factorable functions.
be a sequence of functions of the following form.
1) fl=xl,...,fn:xn
2) for n<i<L fi is of one of the forms
a) fi = const.
b) fi = g(fj ,...,f]_ ) for some q¢ § jl""’js
1 S
c) fi = q(fjl,. ’ .,fjt) for some qe3 Jppeeesd,

Then, forn< j <L, fj is a factorable function.

£ ; ,fj is a factorable representation for f],.

i

Remark.

and hl" ox s hL be basicrepresentations for g and h, then

"k Lf'k

The set of factorable functions is closed under finite number of ]

We say that the sequence

k

h: R —-Rm.

with

Let fl" 5 ’fL

2

<L

The substitution of one sequence into another corresponds to a call

to subroutine or function in FORTRAN and the sequence f ,...

1

ybgsin

L

Corollary 2 corresponds to a subroutine that uses other subroutines in the

computations,




1.4, Differentiation:

In this section we show how one can compute total or partial derivatives
of factorable functions. We show how one can get from a basic representation
for a factorable function to a new sequence of functions which is a factorable

representation of the original function and its total (or partial derivatives by

means of simple replacement operations.

We start with an example:
Let £ and f(x) be as in section 1. 2; that is, §= {+, -, *, /, #% sin

cos, exp} and

f(x) = cos(x) * exp(sin(x)) + sin(x)**2

As before the following sequence is a basic representation for f:

1) fl =1 (I is the identity function)
2) f2 = cos(fl)
3) f3 = sin(fl)
4) f4 = exp(f3)
5) f5 = f3 * f3
6) f6 = f2 3 f4
7) L, = f() + f5




We replace this sequence by

Wy \ - [ “rt 4 ! l
1) FOGK = X 2 z‘L(X,,\’) =X ) V(X,X'") e R
8
2) E': ‘0S| | l‘ - }'3 = _Sj_n(rl) %* [‘i ‘/
3) E'{ 5::::!'11 S I"v) = :os(l‘l) % F‘l )
» o ~ s ISR o\ % [
4) }.‘ c.<plf3) : E4 I4 F,j )
5 ¢ E = F * F o = F S F' o e B
) . I i I ; F% 13 * Py + I3 F3 )
r “ o = 3 g 23 = >:: ¥ y #: }
Rb g e P T e e e
4 TN (8 o8 2 o 5 E! = P! + F! )
f 6 5 6 5

Please Note:

2

2
- R

a) The new sequence is a factorable representation for a function F :R
b) There is a "simple" correspondence between the original sequence and
the new sequence. Each term in the original sequence of the form g(fj)
was replaced by a term G(Fj) where: G: R2 - R?‘ is a factorable function,
and Fj is the jth term in the new sequence. Similarly terms

of the form g(f, , f. ) were replaced by terms of the form G(F ,F )
]

a ]g 3",
where G:R - R° a factorable function which corresponds to g .
f(to)
c) Finally, F(to,l) = or in general: If h is a function of t,

d 7
sefity ],
dt t-to

d
h(to) = ho gt h(t) b~

h! then
0 0




f(n(t,)) \
F(h,, hy) = ‘

0
d
5t (L) ‘t__to |

The following discussion describes the general case.

Let ¢ be a set of basic library functions. Let T be an operator
that maps functions to functions. We assume the following:
1) T is defined for all factorable functions and if f: D C R" - Rm then

M8 s Ec®™® ~R™¥ (k is the degres of T). E=D xR,

2) ] i /T[fl]

£/ \T[ M)

3) T(1] =1, (I is the identity map in R).

4) Forevery ge £ (g: DC k- = R) Z a factorable function

s-k k k-1)*
G G E€ K - R ,(E=D X R( ) S),B for every factorable function

f: DcrR"-R%, f(D)C D

’

Mol oy Pl etle ], voey O




: k i
5) T[const.] is a constant vector function (T[const.]e¢R") and % a

factorable function C : R - Rk 5> YceR T[c] = C(c).

Theorem 1.
Let ¢ and T satisfy the abové conditions. Let f be a factorable
function £:R - R, and let fl" S ,fL be a basicrepresentation for f, then:
T[f] is a factorable function.
moreover if we replace the terms fl’ o ’fL by Fl,. h ,FL where

i) for 1 <i<n F, is the sequence 1 x

Clc) if =

then we get a factorable representation for T[f].

Proof:
By induction on the length of the sequence representing f. 1f
f:Rn—- R and fl""’fL represents f and L = n+l then either
J js
a) f=g(% ,...s%X )forsome ge¢ & or
b) f = comst.
j J
P2 n 1 S
in case a we replace the sequence X ,X ,...,%X , QX o nnsXx ) by .
Lol Jiak : Yiak
k 12 i1 s? s
xl’l,...,xl’k,...,xn’l,...,xn’ g G gesvgX  giaspk § s e )

TThe function Gi is the factorable function corresponding to the basic
library function 9;-

=10




where G is the factorable function corresponding to g . By Assumptions 3

Ji J':‘- jlyl jl’k jS’l jsyk
PPE] = Tlglx ", .. . ,x )] = GX 0 e e

and therefore we have a factorable representation for T{fl. Incasebif f=¢

| n . l,l H,k < 5 .
then we replage X ,. .. % ,C by Xy % ,C(c) and again by

T[c] = Cle). Let f:R" =R, f,,...,f represent f, L =n+j, and

Assumption 5
G 1 ]
assume the theorem is true for all sequences of length L=n+i, i<j. f:fL(x et

is either of the form gl(fj ,...,fj i gLe_c jl,...,js<L or fL?const.

1 S
For fL‘ const the same argument as for L = n+l applies. Let 11,... .FL
be the sequence that corresponds to fl,. A ,fL. £ = fL = g(le,. e .f}\:u SO
by construction, FL = G(E, ,...,F. ). By the induction hypothesis, |

)| Is gl
T[f ),...,F = T[f ] and F_, 1 <i<s  are factorable, therefore: By

3y )y JS )y
Lemma 1, Gl i‘}. T ,FJ ) is factorable., By Assumption 4,
1 S
T[fL] R e Ee G(T[fj | ,T[fj = G(Fi ,...,FJ )
) Js 1 5 H s
@SE Ve
: As an immediate consequence of this theorem we have:

Corollary 3: The theorem is true for factorable functions from Rn to Rm

We also have the following extension.
Theorem 2: Let T and ¢ satisfy the above. Let & be a set of factorable
: functions. Let f be a factorable function f:Rn - R, an\d fl" o ,fL a

- f =x' and for

factorable representation for f, thatis: f =x,...,f =

n<i<L fi is of one of the forms

_ll..




c f PO i I R R

d) tl qnlls ’t] )) ’19 1]5 ’ (J(S

B Eoeple e Bl i o<ty el
1 jl

€) !], const.

If we replace this sequence by the sequence Fl,. o ,}‘L where |
ll ’
P e, S e Kc‘mdfor o< 1<
GBS o v e i) if f1 R e e (o
Jl Js )1 JS
F % TGUE, . o B 0 L2l seceat ) 5 Q€T
1 Jl }L 1 Jl Jt
C(c) IS e
i
then,for n < £ < L, the sequence Fl, e ,I‘[ is a factorable representation for

T[ fl] . The proof of this theorem is the same as the previous one. We only

have to use the following lemma.

Lemma 3: |

Let f be a factorable function f : D C Rn - R, Then, for every

> - A A A

n
factorable function f: DCR «+= R with KDjC B,

e, ..., = e e],. .., ) .

Proof:
By induction on L, the length of the sequence representing f .

If L= n+1 then either f=c or

a]P




j) i
Eloagee = . K ) A
)

If f=c there is nothing to prove and if f = g(x ,...,x ) then the lemma

is true by Assumptions 3 and 4.

Assume the lemma is true for all L = n+) j <i and L = n+i, then
if f=c, again there is nothing to prove and if f = g(fJ £ ,fJ ) jl" s
1 s
js S[L et then:
il Aty 2 g il AR
il g e e B o S G G SR, ) PRI, S - S i 1
Jl Js
2l “n il n ,
= G(T[fj 6 e s Mo s HE 4 5. 5F )]} by Assumption 4
1 Js
=l ~ Al %
= G(T[f, J(7(f Lo TIE™ D, ., T[E WT[E],...,T[f"])) by induction
1 5 hypotheses
= T[g(fj ¥ abg MEEE T ,T[fn]) by Assumption 4
1 Js
7 /\l ~n
= PHIEHE (. oo HE D = & Ba
Remarks :

1) Take § to be the set of standard Fortran functions and the arithmetic
operations. Let T be an operator we wish to implement and assume that
Assumptions 1-5 are satisfied, Theorem ] then says the following: Let F
be a subroutine that computes a function f (For the moment we assume that
no IF or GOTO statements are used ). Suppose we replace each variable
by a K vector (L vector by a KX L-array and so on), replace each constant

by a constant vector, and replace each arithmetic operation and function call

by a corresponding subroutine. Then the result would be a Fortran subroutine that
computes T[f]. The replacement rules are simple and can be carried out

mechanically by a precompiler,

_15_




2) Theorem 2 says that if we are using other subroutines or functions
in the course of the computation we can transform them separately. In the
replacement process we replace the original call by a call to the corresponding
transformed routine,

1.5 Example |. Taylor Series Expansion
i

Let IX(tO)]i denote —1— —c—j——— X(t)‘t R Assume we know the values

|
L g 0

of [X(to)]j, [Y(to)]J, = s el

i) If Z=X+Y , then we can compute [Z(to)]j by
[2(ty)]; = [X(to)]j * [Y(tO)]j i e G e e

ii) If Z =X *Y, then by Leibnitz' rule

[Z(to)]j = i [X(to)]S : [Y(to)]j_s, oot o
s=0
iii) If Z = X/Y and Y(ty)# 0, then
j-1
21 = vty - (Kegly - L 1At - (gl g} = k2K

iv) If Z = EXP(X), then we can compute [Z(to)]j using the recurrsion relations
j-1
(2t = SZO‘“'S’/”[Z“OHS SR T b2k

It is well known that there are recurrsion relations that enable one to com-

pute successive derivatives of functions that satisfy rational differential

equations. In Appendix A we give a list of such recurrsion relations for the
most common special functions, (See also [1,7]).

As a matter of fact, the discussions in (1] and [7] show that one can
write such recurrsion relations for functions satisfying differential equations

of the form Y' = f(t,Y) where f is a factorable function and § is a set

| -14-
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containing the arithmetic operations and functions satisfying rational differ-
ential equations.

Let & be a set that consists of the identity function, the arithmetic
operations, functions that satisfy first order rational differential equations
(like exp and log), pairs of functions satisfying second order rational differ-
ential equations (like sin and cos), and so on. Choose the set ¢ in such a
way that all recurrsion relations between successive derivatives can be

expressed as factorable functions. For example: the set of functions in

Appendix A is such a set.

Let k >1 be an integer. For each basic library function g: D C RS»R

take G to be the factorable function satisfying:

al GiE-DxpE . gt

b) for every function X : R— RS 5 X Ck , if X(to) e D and

[X(ty)], = X, ¢ R RO T S
[aX(t )],
[a(X(ty)],
GlXgsXise . 5%y ) =
[a(X(t )],

We define Tk as follows: ‘
i

Let f: WC Rs-R be of class Ck.

Let T[f] =F be the function satisfying: "
1
a) ErwxRTE 5 2

b) For every function X : R— Rs ! X Ck , and for every t0 e R

_15_

_JRTR S N -




such that X(to) e W
P
/ [E(xt ], \
[f(X(CO))]l

F([X(toy]o, [X{toﬂl,...,[xno)]k) |

\\ [f(Xet )],
It is not hard to see that the operator '1“k and the set ¢ detined above
satisfy assumptions 1-5 of Theorem 1,

Note that the set £ contains only analytic functions and therefore
the factorable functions are analytic. In the next section we will show that
it is possible to include in the basic library set, functions that are only
piecewise analytic (like max, min and abs).

Also note that in order to compute high order derivatives of a func-

tion one has to use all the lower order derivatives of that function. There-

(k)

fore the operator T : f— f ', k>1 does not satisfy assumptions 1-5 of

Theorem 1.

1.6 Example 2: Partial derivatives

Let f(j) denote ;Tf

Let ¢ be as in Example 1.

Let k >1 be an integer.

For each basic library function g: D C Rs» R take G to be the
factorable function sa\tisfying:

a) WD R® ™ & ™M

~16-




T SRR S

b) For every function h: Rk - Rs s e Cl if h(XO)c D then

ZathX) O\

g“)(h(Xo))

G(h(XO) sy (XO),.. Al

() | :
\g(k)m(xon
k

Let f: W _C_.RS» R be of class Cl, let Tk[f] = F be the function

k) Fo) = |
We define T, as follows:

satisfying:

R L o L, »

b) For every function h: Rk ~ Rs h e Cl, and for every Xo € Rk

such that h(XO) e W

£(h(X,))

F(h( XO),h (Xo),. e ,h(k)(Xo)) =

(1)
£y (h(Xo))
Again it is not hard to see that the above ¢ and Tk satisfy the assump-

tions of Theorem 1.

-17-




1.7. Piecewise factorable functions:

So far the model does not describe computer programs which
include IF and GOTO statements. The extension is straightforward.

We use the following definition:

Definition:

n m
A function f: DC R - R is a piecewise factorable function

k

if and only if there exists finite number of sets Ul’ Goe ’Uk 5Dc U Uj
j=1
and f restricted to each Uj is a factorable function. A very useful fact
about piecewise factorable functions is:
Lemma 4:
Let g and h be piecewise factorable functions. q : D1 an-—Rk,
k m k

h:D,C R =R if q(D) = {zeR | z =q(x), xeD} S D, then

n m
5 Dl C R =+ R defined by f(x) = h(q(x)), xe D1 is a piecewise factor-

able function.

Proof:
= s
... CR besets 3D €\ U and q is a
g PG Iy * : U,
k e -
factorable function. Let Vl’ oo ,Vt CR" be sets 3 D2 W
=

Let U

and h ‘V is a factorable function.
|

j
Let Wi :{§<Ui|q(§)¢vj} Istcs, 12}k ¥ Wij¢¢

’

j

)

then flw is a composition of two factorable functions and therefore
)

factorable. Since q(D;) € D D,cU W ,. QE.D.
1 2 RS
’




Since locally (that is: on the appropriate sets) piecewise factorable

functions are factorable,the previous discussion applies. If § and T are
as in section 1.4 and f is a piecewise factorable function then, T([f] is a
piecewise factorable function. If we carry out the replacement process for
the factorable representation of each piéce, we will get factorable

representation for T[f] on each piece. We therefore arrive at the following

theorem.

; . n m
Theorem 3: Let ¢ and T satisfy assumptions 1-5. Let f: DCR - R
be a piecewise factorable function. Fe b iU e R" be sets

I’ (Fkes
s

D\ U and {
g=1 -2 U,

Let fi LERE ’fi I 1 <1< s be factorable representations for
b b ]
3¢

is a factorable function, 1 < i< s,

f U If we carry out the replacement process as in Theorem 2 for each
i

sequence fi TEEE ,fi L i<i<s, then we get a piecewise factorable
b > 3

8 (k=1) m-k -
function , F: D XR T~ R oD F‘G :T[f[U] where
. (k-1) 1 1

U =Ui><Rn

i We call this function T[f].

In practice, as Examples 1 and 2 show, £ is a set of analytic
and piecewise analytic functions. Also,most functions we use in applications
are piecewise factorable and therefore piecewise analytic. Of course,if
one wants to talk about piecewise analytic functions, the pieces (that is
the sets Ui) should be "nice" sets.

Most computer programs that arise in numerical applications compute
piecewise factorable functions. We can always make T[ f]1 = f. Therefore

if we leave the decision statement and GO TO statement unaltered by the

-19-
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replacement process, we will not change the path of execution. Since
locally this path defines a factorable function f, after the replacement

we will get a factorable function which is (locally) T[f].

1.8. Iterative procedure:

Many functions are computed iteratively. The number of iterations
in the computer program must be finite of course. This number however
can change according to the values of the arguments. The usual arrangement
in iterative procedure is as follows: One prescribes atolerance ¢ and sometimes
an initial guess. The program then proceeds with the iterations until the
change in the function value, or the estimated error is Le, Once € is
fixed, the number of iterations as a function of the arguments is, in most
cases, piecewise constant. Since interative procedure can differ considerably,
we cannot say what are the precise conditions that make functions that
are computed iteratively, piecewise factorable. However by careful ﬂ
study of a particular problem at hand, in many cases, one can show that

the function actually computed is in fact piecewise factorable,

In such a case if one computes derivatives of that function,
one actually computes the derivatives of a piecewise factorable
function, These derivatives might not be a good approximation
to the derivatives we had in mind. However many times one can use the

following classical theorem (see [15]).

.
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Theorem: If fj is a sequence of analytic functions in the complex

plane and fi - f uniformly on a closed disc D(xo, r) then f is analytic

in the disc,

() %)

, uniformly and vze D(xo,r)

L Ifj‘k)(z) -5

it k)(z)lfl—k sup  If (w) - f(w)] .

r we D(xo,r) J

1.9 Taylor Series Expansion of Implicit Functions.

Let fe Ck, (e = 1), f:RXRn—— Rn assume that f(t Ye=r0L it e SR

0’ "0 0

x. ¢ R and T :f-l(t

0 4 O’XO) exists. Then the system of equations f£(t,x(t))

= 0 defines implicitly a unique function x:R - Rn, X € Ck > x(to) =X, and

f(t,x(t)) = 0 in the neighborhood of (to,xo).
Moreover, from Theorem 20.3 in [6, Ch. 5, p. 329-332] it follows that

if
; (j)
x () j |
gi(t) = f(t, ), I (t—to)) iy el e [
)=0
then
m
i) for m<i ==——"lgi it} =0
el S
dt to
4 1 T
i ey = or =g
dt to

TThere is an error in the statement of the theorem in [6] (Theorem 20.3,
Ch. 5, p. 329).

i

= s up -Cli- (g, ()
dt
and not
(i) T
" = - 3T =7 tgltn.
A et
wd]=
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As a corollary we have: Let

) ifle)(to) _ ).(\_(t-to)1
g.(t) = f(t, Y —2(t-t ) § —D—)
i — it 0 i
j=0
then

i : : K

<P —91— g(t) - x“)(to) - x
dt 't:to

~ n
for. any vector xe¢ R .

The above discussion shows the following:

Theorem 4:

Let f be a factorable function (with &£ as in Example 1).

f:RXR'= Rn. Assume that: fe Cs (s >2), f(to, xo) =0 and
-1
E = fx (to, xo) exists.
Assume we know X(t,), [x(to)]l, oy [x(to)]i_1 (i<s).

If we take any vector in Rn as an initial guess for [x(to)]i and we
get the Taylor series expansion of the modified Newton method (T

considered as constant matrix) X1 =% " Pf(to, xk) then after

k
one iteration we will get [x (to)]i exactly:

Therefore we use the following procedure: We start by the

regular Newton method to find X such that f(to, xo) = 0. Then we set
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I fx (ty, %o and get the Taylor series expansion of the modified

Newton method. In the ith step we compute derivatives up to order i,

taking 0 as the initial guess for [x(to)]i. We continue the same way

until we get derivatives up to the desired order. |

1.10 Computation of Sparse Gradients

a) Band gradients: Many times the gradient matrix is in band form (for
example in the numerical solution of a two-point boundary value problem). In
such a case the gradient can be computed with great saving in time and

space.

Let f:R" - Rn pe a factoraple function (piecewise factorable].
and assume that,for all j, fj depends only on {xi\ where |{-j| <k}.
Assume that we want to compute the partial derivatives of f with respect
10 X e Rn. Instead of reserving n+l words for each variable and starting

with the matrix:

( G TR gl T

1 0

0 1 0

n+lﬁ 0 0 :
0

i ]

One needs toreserve only 2k+2 words for each variable and start with the matrix

-G




( s :_:: ) :\,.:k +1 Xalu—& X&kH = P
/
7. ( ] 0 \ |
0 1 0 1 \
p |
0 E ; 0 ]
2kt+2 I : !
F
\\ O
0 0 1 0 0

b) The general case: Many times the gradient matrix is sparse but
does not have a structure that is easy to take advantage of. However it is not
necessary to know in advance which of the entries of the matrix are identically

zero. One can carry this information with the computation and use the following

obvious fact:

If :
]‘ x lif_t %0 )
t LS
i
and if
h{x):f{glrx),. ,gstx))
then
oh S
= {i| — e
J = 90X meL s t=1 It

i
In the implementation, each variable will be a pointer to a vector
which will keep a list of nonzero partial derivatives. Each subroutine
that replaces a call to a basic library function will compute function values

and nonzero partial derivatives only. The subroutine will create a list of the

nonzero partial derivatives of the composition.




The implementation of automatic computation of partial derivatives
of FORTRAN functions (GRADIENT) described in this report does not use

the above method. We plan to implement this method in the near future.

2. The Implementation.

2.1. Introduction. r;
In earlier sections it was pointed out that most computer functions
and subroutines used in numerical computations compute (represent)

piecewise factorable functions. It was shown that every sequence

representing a piecewise factorable function can be transformed into
another sequence which represents the original piecewise factorable
function and its total or partial derivatives. The translation process is
merely a replacement process and can be carried out mechanically.

In order to implement such a replacement process one needs a

processor that will do the following:

a) Break the subprogram into a sequence of one step terms.

b) Replace each term by a body of code.

c) Expand each program variable into a vector. The size of that
vector will depend on the order of the operator implemented.

d) The processor should leave the control structure unaltered,

that is: Do loops and IF statements should be left unaltered.

There are three principal ways to implement the replacement process.
a) Macro expansion.
b) Replacing each term by a subroutine call.

c) Using an interpreter.




We chose to use the second method mainly because we could use an
existing precompiler: AUGMENT. We also feel that the second method is
the most powerful and flexible of the three.

2.2. The AUGMENT Precompiler.

Since we are using AUGMENT as thé main tool for the implementation
of automatic differentiation, we find it appropriate to give a very short
description of the function and use of AUGMENT. However, in order to
understand fully how to use it, the user should read [ 3].

The AUGMENT precompiler was designed to simplify the use of
nonstandard data types in FORTRAN. AUGMENT enables one to define
new data types and operations. It enables one to write FORTRAN programs
using these new data types as though they were standard. AUGMENT
input consists of programs written in "extended'' FORTRAN, that is;
FORTRAN programs using nonstandard data types, operators, and functions.
AUGMENT translates the input programs into standard FORTRAN programs
with the nonstandard constructs translated into subroutine and function
calls. The supporting package (that is, the above subroutines and
functions) implement the operations with the nonstandard data types.

In order to implement a new data type with AUGMENT one has to do
two things

1) write a package of subroutines to implement the operations and

functions defined on the new data type,

2) write a description deck which describes the new data type.
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In the description deck one provides AUGMENT with the following

information:
a) The name(s) of the new data type(s).
b) The number and type of computer words to reserve for each
nonstandard variable. .
c) The set of operations and ''standard' functions defined on the
new data type.
d) The names and calling sequences of the subroutines and functions
that implement the above operations.
e) The relations between the new data types and other data types
(standard and nonstandard).
For more detailed information see [ 3].

2.3. GRADIENT and TAYLOR Packages.

This report describes the implementation of two types of differentiation:
1) TAYLOR: Automatic Taylor series expansion of FORTRAN functions.
2) GRADIENT: Automatic gradient computation of FORTRAN functions.
The automatic differentiation is implemented by providing two new data
types: TAYLOR and GRADIENT. The operations defined on the new data
types are the arithmetic operations and almost all the standard FORTRAN
functions. Each subroutine that implements a nonstandard operation

computes (represents) the corresponding factorable function G of Theorem 1.
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Suppose one wants to compute the gradient of a function f, which
is a function of n variables. One has only to write a FORTRAN function
(subroutine) that computes f. In the function or subroutine code, one
declares the arguments and other variables (including the function itself)
as type GRADIENT. Then one submits this function with the description
deck (which is part of the package) to AUGMENT as data. The output
from AUGMENT will be the desired subroutine. AUGMENT will translate
the function into a FORTRAN subroutine written in ANSI standard FORTRAN,
declaring each GRADIENT variable as a REAL vector of dimension n + 1
(and each k vector as an (n + 1) Xk REAL array and so on). Each
arithmetic operation or function call will be translated to a call to the
appropriate subroutine. The translated subroutine together with the sub-
routines provided by the GRADIENT package will compute the gradient of
the function f at any desired point.

Below we give a detailed description of the two packages and their
use. The complete listing of the supporting packages and the description
decks is given on a microfiche card at the back of this report. Most of
the details of the two packages are the same: Anything that is said below
applies to both packages, unless the contrary is explicitly stated. We
will use the term VARIABLE for either type GRADIENT or TAYLOR and CONSTANT
for types REAL, INTEGER or DOUBLE PRECISION. The relations between

VARIABLE and type COMPLEX are undefined.

.



TAYLOR and GRADIENT Variables:

Each GRADIENT variable is a REAL vector of dimension N + 1 where
N is the number of the independent arguments. The first word holds the
variable value and'the (I + 1)th word holds the partial derivative of
that variable with respect to the Ith independent argument.

Each TAYLOR variable is a Real vector of dimension N + 1 where
N is the highest normalized derivative to be computed. The (I + 1)th
place holds the Ith normalized derivative, I =0,1,...,N.

Arithmetic Operations:

All arithmetic operations between VARIABLEs and all arithmetic
operations between VARIABLE and CONSTANT are legal except INTEGER
raised to a VARIABLE power. Since the recurrsion relations that replace
arithmetic operations between CONSTANT and VARIABLE are simpler than the |
general relations, separate routines are provided to implement the ]
arithmetic operations between CONSTANTs and VARIABLEs. Conversion of
CONSTANT to a vector format is done if there is a statement of the form

V = ¢ where V is a VARIABLE and c¢ is a REAL expression, or if there

is a reference to a conversion function (see Conversion routines).

Standard Functions:

In Table 1, we list the standard functions that are implemented in
the two packages. One can easily add other functions to that list by adding

their names tc the description deck and writing subroutines to implement |

them.
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Table 1.

Function reference| Function Suffix Comments
ABS(x) |X| ABS

ACOS(x)" cos '(x) | ACS

ALOG(x)} en(x) LN

ALOGI0(x) log) (%) LOG

AMAXl(x,y)I max(x,y) MAX function of tg:gyarguments
AMINl(x,y)I min(x,y) MIN i
ATAN(x) tan L) ATN

ASIN(x)Jr sin” " (x) ASN

CBRT(x)" 143 CBR

COS(x) cos(x) COS

COSH(x)1 cosh(x) CSH

COTAN(X)Jr cotan(x) CTN

EXP(x) exp(x) EXP

LOG(x)* £n(x) LN

MAX(x,Y) max(x,y) MAX function of two arguments

only

MIN(x,y) min(x,y) MIN "
SIN(x) sin(x) SIN

SINH(x)T sinh(x) SNH

SQRT(x) X% SQR

TAN(x)T tan(x) TAN

.!..

See automatic typing.

Not an ANSI standard function.
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Automatic Typing:

This package provides the same feature that exists in many FORTRAN
compilers, automatic typing of functions; that is, the type of function
used is determined by its arguments. Thus, for example, we have defined
LOG and ALOG to be names of the function which takes the logarithm
of an argument of type VARIABLE.

Conversion Functions:

There are three subroutines that implement conversion from CONSTANT
to VARIABLE, one each for types REAL, INTEGER and DOUBLE PRECISION.
These routines can be referenced in the original program by the use of

the conversion function: CTTYL(-) in TAYLOR and CTGRD(-) in GRADIENT.

The function accepts all three standard types as arguments (see automatic
typing). Automatic conversion is invoked only for type REAL. That is:
the statement V = const is legal only if the const. is of type REAL.

Norm Function:

It is sometimes convenient to test the distance between two VARIABLES
(for example in a test of convergence). Since the relational operators compare
only the first words of the VARIABLES they cannot be used for that purpose.
The packages provide a function NORM that computes the distance of a
VARIABLE from the 0 vector. In TAYLOR package, the function NORM is a
function of two arguments, TAYLOR and REAL

NORM(v,t) = max ’[V]ih

=g =




In GRADIENT, NORM is a function of one argument

NORM(V) = max (JV ]).
0<i<N !

In both packages the function is implemented as REAL function.

Logical Statements:

The relational operators can be used to compare two VARIABLEs, or
VARIABLE with type REAL. The comparison is done between the first words
of the VARIABLEs or between the first word of the VARIABLE and type REAL.
The comparison operators are implemented as LOGICAL functions.

Other Subroutines:

The packages provide two additional subroutines:
1) Error handling subroutine (see our later discussion of Error handling).
2) Copy subroutine.

The copy subroutine implements the statement A = B, A and B VARIABLEs.

Subroutine Names:

The names of all subroutines in both supporting packages are
composed of two parts:

i) The first three letters (the prefix).

ii) The last three or two letters (the suffix).

All the routines in each package have a common prefix: TYL in
TAYLOR and GRD in GRADIENT. In order to avoid name conflicts, the

user should avoid using names starting with the above prefixes.
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The suffix of a subroutine's name depends on the function or
operation the supporting routine implements. In Table 1, we give the
suffixes of the routines implementing the ''Standard'' functions. The
suffix of a routine implementing arithmetic operations is given systematically.

The first letter describes the operator. A for +, S for -, M for *

’ ’

D for /, and E for #*%*. The next two letters describe the operands:
first the left operand and then the right one. The letter R stands for
REAL, I for INTEGER, D for DOUBLE PRECISION and V for VARIABLE. So
MVV  will be the suffix of a routine that implements (VARIABLE) * (VARIABLE)
and DDV of a routine that implements (DOUBLE PRECISION)/(VARIABLE).
The suffix of the LOGICAL functions implementing the relational
operators is composed of the two letters representing the operator and the
letter V. So .LT. is implemented by a function with suffix LTV. The
suffix of the routine implementing the norm function is NRM, Error routine - ERR
and copy routine - CPY.

2.4. Using the Package with AUGMENT.

Writing the Source Code:

In order to get derivatives of a function, say the Taylor series
expansion of a function E, the user should write an '""extended' FORTRAN
function or subroutine that computes ? All legal FORTRAN constructs can
be used. All program variables which depend on the independent variable
should be declared as type TAYLOR, including the function itself. Program

variables which do not depend on the independent variable can be of any

other type.
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External functions and subroutines can be used as part of the
computation. Functions must be declared as type TAYLOR. External
functions and subroutines can be translated separately. However, one
has to make sure that the number of computer words reserved for each

IAYLOR variable in the external subroutine (function) is the same as

the number of words reserved in the calling routine.

The Description Deck:

The next step is to submit the source deck with the description deck
as data to AUGMENT. See Appendix C for the deck structure. The
description deck is supplied with the package.

However, since the number of words reserved for each VARIABLE
changes from problem to problem, this number has to be put into the
description deck each time. To make it easier, the description deck was
split into two parts: HEAD and BODY. The number of words to reserve is
inserted in between the two parts. This number should be an integer
constant. Column 1 in the card holding this number must be left blank.

Order of Differentiation:

The routines in both packages were designed to implement any ''order"
of differentiation without the need to be recompiled every time the 'order"
is changed. The '"order'' of differentiation is provided to the package through
a common block. In TAYLOR by COMMON/DEGREE/N and in GRADIENT by
COMMON/ORDER/N N is the order of the operator, that is: if N =1

the package will compute function values only; if N = 2, function values

= 3=




and first derivatives (or first partial with respect to one variable); and

so on. The routines in the package do not check that there is enough
space provided for the VARIABLES. However there is a check that N > 1.
The order can be changed at run time but care should be taken not to
exceed the number of words provided for each VARIABLE.

Working Space:

Some routines in TAYLOR need work space and, since they are
designed to handle any order of differentiation, the work space has to be
provided by the user. The work space is provided through four common blocks.
COMMON/WORK]/WORK](N)
COMM@N/WORK2/WORK2(N)
COMM@N /W ORK3/WORK3(N)
COMMON/WORK4/WORK4(N)
N should be the highest order of differentiation used. The GRADIENT
package does not require work space.

Using the Translated Routine:

The translated routine is a FORTRAN subroutine that gets as input

D

the value of its arguments and their derivatives, and gives as output the

value of the function and its derivatives. For example, in the Taylor

package, if t is the independent variable, then t,1,0,0... is the

: .th
Taylor series expansion of t. In the Gradient package, if x is the ]

3 9x
independent variable then 8: = 1 and B =0 for 1% j-
j i
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Example:
In this example we compute the first 9 terms of the Taylor series
expansion of f(t) = exp(cos(4t)) + axutan(sind(u) at the point t = .S5.

a) The source code:

TAYLOR FUNCTTON FUNCT)

TAYLOR T

FUN=EXF(COS(A. XTI )+ATAN(SIN(T )Y % %2)
KETUKN

ENDI

b) The translated code:

SUEROUTINE FUN (Ts TYLRLT)

5 ===== PFROCESSED RY AUGMENT, VERSION AL =====
C wm—we TEMFORARY STEORAGE LOCATIONG ——-—-
C TAYLOR
REAL TYLTMF(?+2)
€ ==mact E QCHE VARTAEILES ——=——
(i TAYIL Gk
REAL TYLRESG(9)
€ C s GICHRAE S VARTARLES —==—<
€ TAYLOR

FEAL T(P): TYLRLT()

ze=zz TRANGLATED FROGRAM ==mu==
CALL TYLMRY (49T TYLTMF(1,1))
CALL TYLCOS (TYLTMF(Ly1) s TYLTME(1+1))
CALL TYLEXF (TYLTMF(1,1)sTYLTMF(151))
CALL TYLSIN (TsTYLTHP(152))
CALL TYLEUT (TYLTMF(152) 925 TYLTHF(192))
CALL TYLATH (TYLTHFCLs2) o TYLTHE (15 2))
CALL TYLAUY (TYLTHMF(1+1) s TYLTHF(1¢2) s TYLRES)
GO TO 20000
c ~==== RETURN CODE ~---~
30000 CONTINUE
CaLL TYLEPY (TYLRES:TYLRLT)
EFTURN
FND

i
i
i

3 he
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:) Main program:

ITMEHS  ON T(9)yFUNTI9)
cornton /Dl GREE/ N
COMIION JUDRKI /W (%)
COMMON UORKR 2 7W2 ( )
COMMON ZUOKK3/W3( )
COMMON ZLIORKA/WA4(7)
N 2
TC1)=45
JE22=1
pg 10 1=3:9
10 T(I)=0,
ChaLl FUNCTFUNC)
FRINT?1:T(1)y (FUNCC(L) yL=149)
%1 FORMAT(1X, ‘EXAMFLE? TAYLOR SERIES EXFANSION’»/s3Xvr/'T=’9F6.3//»
. (IXrE13:5))
STOF
ENIi

d) Output:

EXAMPLE ¢ AYLOR SERIES EXFANSION i
T= 4500

88551400
-+ 159984101
69751101
~s774351+01
-+ 347944101
« 854

CONGO 4!
T8 P+02

L4 0D

AT TALN
. )

+10762103

In Appendix B we give a more complicated example.

Error Handling:

In general the packages do not check that the arguments are within
the domain of definition of the functions. Checking is done only for division
by REAL, INTEGER or VARIABLE types. The packages also provide the
capability to specify what constitutes division by zero. If the absolute value
of an argument to division routine is smaller than or equal to specified

value, error occurs. This value is set initially to 0.0 by a DATA state-

ment. However it can be changed in runtime through common block

SOPY AVAILARLE 10 P20 BGES KOT
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SR At

/ZERO/EPS. The routines in the package also check that the order of

lifferentiation is at least 1. In case an error is discovered, the error

routine is called (suffix ERR). The error routine prints error messages

and performs a '"'walk back' (which traces the sequence of subprogram 4
*alls back to the main program) and stops.

Non ANSI FORTRAN Parts:

No special care was taken to comply with some of the restrictions
imposed by ANSI FORTRAN, for two reasons:
a) Some of the features in the packages could not have been
implemented otherwise.
b) Some of the restrictions violated seem to us arbitrary and unreason-
able.
Moreover they do not exist in most production compilers.
Below we give the list of non ANSI FORTRAN constructions used.
1) The set of ''standard' functions used is larger than the set in
ANSI FORTRAN. Functions which are not in the Standard are flagged
in the function table by +. The corresponding routines could be
deleted or modified to fit different systems.
2) The work space to TAYLOR is provided through common blocks
and therefore the common block sizes in the TAYLOR routines
would be different from the block sizes in the main program.
3) The walk back routine used in the error handling routine is non-

standard and has to be changed in other systems.
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4) The REAL variable EPS appears in common block /ZERO/ and in
DATA statement (in the error routine).

5) No care was taken to comply with the standard concerning
expressions as subscripts to arrays. :

6) The function ATANZ2 is not implemented.

7) No care was taken not to mix INTEGER with REAL.

Using the Package; Summary:

Assume one has all the package subroutines in relocatable form, so
they can be used as library routines. In order to get the derivatives of a
function E one has to do the following:

A) Write a FORTRAN suerutmeJr (function) that computes the function
f. In the subroutine, declare all FORTRAN variables that depend on the
independent variables as type TAYLOR (or GRADIENT). The rest of the
variables can be of any other type.

B) Insert the number of computer words reserved for each VARIABLE
into the description deck.

C) Submit the source deck with the appropriate description deck as
data to AUGMENT (See Appendix C and also [ 3]).

D) Submit the output from AUGMENT as data to the FORTRAN compiler.

E) Call the subroutine with the desired arguments.

fOne can use main programs too but that is a more complicated way of doing it.




Remarks

1) Always remember that the initial values of the derivatives of the
input variables have to be provided too.

2) All the restrictions that apply to the use of AUGMENT apply to the
packages.

3) AUGMENT does not translate I/O and DATA statements. Their
translation has to be done by hand.

4) This report is by no means a substitute for AUGMENT user informa-
tion manual (MRC TSR #1469 [3]). The user should be familiar with that

report.
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Appendix A

Recurrence Relations for Taylor Series Expansion:

a) =N EY
[z]] = [)\]] + [\’]] I: O,l,
D) 4 = X«¥%
{
(2]; = Ly (X] (Y] ]=0,1,
Py F ok
c) 2 = XY
I\-‘l
= - ] . =
d) Zo= XI I integer
- s
TN & e S L 0,1}
—~ S S
S=0 S
i LS'Z
[Z] = [ H X ] ]=0,1,
] S=0 ]
Z) Eee= O =]
3) 1<0  [2]=(/X ) J=0,1,
e) b = Xa a real constant
T=1
(2], = 1/x- ), (@-k)-k)/1) - 2], - Xy I =k 2.
k=0
f) G = XY

(2]} = [EXP(Y - LOG(XD)]; F=0plye o

g) = LOG(X)
[z]l = [X]I/X X
2]y = /X {IX]; - r:J‘:O((]-k)/j)[x]l_k - (2], T
h) Z = EXP(X)
J-1
(2 = k_\_;o((l-k)/l)[Z]k- Xy I=1,2,
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1)
j)
b
k)
)
m)

Z = SIN(X), W = COS(X)
3
. i
[z]I = ((]-k)/])[W]k.[X]]_k T=0:2: 045
=0
J-1
W), = - 2, (U-k)/niz), - [X)
k=0 I-k
Z = SINH(X), W = COSH(X)
31
. X .
(z); = k_éoul-k)/I)[W]k (X);_x
I\"‘l I = 1)2)
k=0
Z = ATAN(X)
Let v:x2+1 W =1/v
Lo 1
Z = ASIN(X), Y = ACOS(X)
Let O T W = 1/NV
1-1
_ v »
2} = L ((-K)/DIW] - X J=1,2,...
k=0
1l
41T kZ Tk R0, = B, =k
=0
TAN(X) = SIN(X)/COS(X)
1
Nx = X°

TANH(X) = SINH(X)/COSH(X)
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Appendix B
Example
The following example was taken from a homework assignment given in
F an optimization class at the University of Wisconsin. This example is simple
but quite typical of problems that arise in applications. We have to compute
the gradient of a function which can be easily described by a computer program,

but whose explicit expression is quite hard to obtain. When one tries to com-

pute the gradient numerically, one runs into convergence problems. In this ex-
ample we show how easy it is to get the gradient of such a function by using the
GRADIENT package.
The Problem

We have a missile on the north pole of a ball of radius 1 and we want

to fly to the south pole. (The units are chosen in such a way that all the con-

stants are 1). Because the problem is symmetric we only have to solve a two
dimensional problem.

The motion equations are:

er T
> o 3 Hei =XV
dt il
Let t = a7 then
X n 0
d Y -X 0
e =a I = af(x,y,€,m,u,,u,) .
dt ¢ (x2+ 2)2/3 4, P72
1/ N u
/ VR TEN .
L \\x Lty ) &

e




Discretize by the Euler method

*k+1 "

i+l Yk

g o R haflx s ¥ €Mty oz, i)
k+l k '

"k+1/ \”k

Finally, solve:

) .

min Ble,u) o8, g1% gr¥s g2™ .97V 9

5 2 2 2 2 2 2 2
_{20[(x10) +(ylo+1) +(glo) +(n10) L+(Ul’0) +(u2’0)
2
2 2 2 2 a” 20
+(u1,8) +(u2,8) +(ul’9) +(u2,9) + o + > > }
X+ Yy
5 5
All =0 =0 for 1<j< 8.,
ul)] UZ’J _]

Use the variable metric algorithm to solve the above minimization problem.
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1. INBUT BECK

aX3T MRCeLIB.AUGMENT
@ADD GKeDIFF.DESC-GRD/HEAD
8
@ADD GKeDIFF.DESC-GRD/BODY
eJEGIN
¢FOReIS TEST1
'"PLICIT CRADIENT (A-He0-2)
IENT FUNCTION FLTFN(ALFA:UDOUB:US’
”'H;NSIQN UQU2)e UB(215U3(215UC2+10)s XC11)oYC113oVY(11)oVX(11)
X(1)=C.
Y(i)=1.0
VX(1)=C.O
VY(l)=C.0

Ull,I)=0.0
Ut2¢11=0.0

10 CONTINUE
Ulls1)zUD(1)
Ul2s1)=UC(2)
Ulle3)=Ud(1)
UlZe3)zUSL2)
Ulle20)ZU3(1)
UlZe10)zU3(2)
£02C I=1+1C
RSZ(X(I)se2+Y(I)es2)es]l,5
Y(I+1)=X(I)}+HeALFASVX(T)
YUIZ)ZY(I)+HOALFASVY(T)
VX(I42)=VX(I)+HSALFAS(UIL1eI)=X(I)/RS)
VY(I+L)ZVYUI)+H®ALFAS(U(2+I)-Y(I)/RS)

20 CONTINUE
FLTFN=20.¢(X(11)9e2+¢(Y(11)%1)ee2+4VX(11)es24VY(11)0e2)
$ ¢ UC(1)es2+UO(2)%e2+UB(1)9e2+4UB(2)0¢2+US(1)se24U3(2)0s2
$ +(ALFA®*2Z)/10.0 +20.0/(X(6)es2+Y(6)es2)
RETURN
END

¢END

PY AVALAGLE T0 DEC DOES NOI
?‘gﬁw FIALY LECIRLE PRADUCTION
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Remarks.
1) @XQT MRC*LIB.AUGMENT starts the execution of AUGMENT.

2) @DD GKx*DIFF. DESC-GRD/HEAD, adds the card image of the HEAD part of

the description deck into the run stream.

ST,

Similarly @ADD GK*DIFF. DESC-GRD/BODY Adds the BODY part.

3) The function is translated into a subroutine. The function and gradient values
are stored in the last argument of the subroutine.

4) The translated subroutine can be used to compute function and gradient values
or function values alone. (See Order of Differentiation) 1

5) The rest of the computation details are omitted.
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OUTPUT FROM AUGMENT

SUBROUTINE FLTFN (ALFAsUCeUBeU%s GRDRLT)
===z PROCESSED BY AUGMENTe VERSION 4H ====:c
----- TEMPORARY STURAGE LOCATIONS ——-
GRADIENT
REAL GRCTMP(8+3)
-==== LOCAL VARTAJLES —=——-
INTEGER I
GRACIENT
REAL H(8)9s RS(8)9 U(Se2+1C)e VX(8s11l)e VY(8ell)e X(8:11)s Y(8e1l)ys
. GRORLS(3)
----- CLOCAL VARIASBLES ==———
GRADIENT
REAL ALFA(E)s UC(3+2)s U3(Es2)s U2 8Bs2)e GRDRLT(8)
===z TRANSLATED PROCRAM =z==:z==
CALL GROCFR (CeCeX(1le1))
CALL GROCFR (leZsY(1lv1))
CALL GROCFR (CeCoVX(19e1))
CALL GROCFR (0e0sVY(1el))
CALL GROCFR (el9¢H)
Do 10 E=1+10
CALL GRDOCFR (3.CeUtleleI))
CALL GRDCZFR (0e0sUl92,1I))
CONTINUE
CALL GROCPY (UC(1,1)»Ul1lelel))
CALL GROCPY (UC(1s2)9Ul192,1))
CALL GRUCPY (UB(1el)sU(1le1,9))
CALL GROCPY (US(1¢2)sUl192y9})
CALL GROCPY (U3(1e1)eU(1s1,10))
CALL GROCPY (US{1+2)9Ul192,10))
20 20 Iz1.1C
CALL GROEVI (X(1sI)eZ29sGRDTMP(1¢1))
CALL GRDIVI (Y(1+I)e2¢GRDTMP(L1y2))
CALL GRDAVV (GROTMPU{1+1)9GROTMP(1¢2)9eGRDTMP(192))
CALL GRDOZVR (GRDTMP(1e2'-1.5+R8S)
CALL GRDOMVV (HeALFASCRD 1MP(1v1))
CALL GROMVV (GROTMP(1e1)sVX(1eI)eGRDTMP(1s1))
CALL GRDAVYV (X(1lesI)eGROTMP(191)eX(10eI+1))
CALL GROMVV (Hs ALFAsCRCTMP(191))
CALL GROMVV (GRDTMP(2el)sVY(1eI)sSRCTMPI(1¢1))
CALL GROAYV (Y(1eI)eCRCTMP(101)eY(1leT+1))
CALL GROMVV (HyALFAsGRDOTMP(1v1))
CALL GRCOVV (X(1sIDeRS»GROTMP(142))
CALL GROSVV (U(ls1eI)eCRDTMP(L192)eCRITMP(192))
CALL CROMVV (GROTMP(1+2)9yCRDTMP(1¢2)9GROTMP(102))
 CALL GRDOAVY (VX{1eZI)9oCROTMP(1e2)9VX(1eIe1l))
CALL GROMVV (H»ALFAJGROTMP(191))
CALL GRDOVV (Y(LleI)eRSeSRCTMP(1¢2))
CALL GROSVV (U(1929sX)sCROTMP(192)eGRDTMP(192))
CALL GROMVV (GROTMP(1¢1)eGROTMP(1+2)sGROTMP(1¢2))
CALL GRDAVV (VYU(1leI)sGRDTMP(1e2)9eVY(1eI+1))

COPY AVAILABLE TO DDC DOES NOT
PERMIT FULLY LEGIBLE PRODUCTICN
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20 CONTINUE
CALL GROEVI (X{1v11)s2+CRDTMPI14+1))
CALL CROAVI (Y(1v11)»1sCROTHMPI1+2))
CALL GROEVI (GRCTMP(12)929GRDOTMP(12))
CALL CROAVV (GROTMP(1+41)sGROTMP(1+2)vGCRDTMP(142))
CALL CROZVI (VX(1lell)e2sGROTMP(141))
CALL GRDAVV (GRDTMP(1¢2)eGROTMP(1¢1)sGROTMP(101))
CALL GROZIVI (VY(1lel1l)e2+GRDTMP(1+2))
CALL CRDAVY (GRCTMP(1#1)sCROUTMP(1¢2)sGROTMP(1e2))
CALL GROMRV (2C<vSRCTMPI(1+2)9sGRDTMP(142))
CALL CROEVI (UO(1e1)9s2+5ROTMP(1e1)) 1
CALL CRDAVV (GROTMF(1¢2)9SRCTMP(1¢1)eGROTMP(1e1))
CALL CROTVI (UD(1e2)92+sGROTMP(1+2))
CALL GRCAVV (GRPDTMP(1e1)sSROTMP(1¢2)9GRDTMP(192))
CALL GRDIVI (UBIU1s1)92+,GRDTMPI(1+1))
CALL GRCAVV (CRDTMPU1¢2)eSRUTMP(191)9CRDOTMP(101))
CALL CROZVI (UB11e2)92+CRDTMP(142))
CALL CROAVV (GRODTMP{1¢1)eCROTMPU2¢2)eGRECTMP(1+2))
CALL GROTVI (US(1s1)v2+CRCTMPII41))
CALL SRDAVV (GRCTMP(1+2)9GROTMP(1¢1)9GRDTMP(101))
CALL GROEZVI (US(142)92+GROTHMP(I42))
CALL GRDAVV (GROTMP(lel)sSROTMP(1s2)vGRDTMP(102))
CALL GRDCIVI (ALFA,2¢CROTMP(1ls1))
CALL GRDCVR (GROTMPIZ+¢1)912.0¢GROTMP(191))
CALL GRDAVV (GROTMP{1e2)sSRITMP(1e1)eGROTMP(141)
CALL GROLVI (X(19G)e2eCRDTHP(1+2))
CALL GROIVI (Y(1e6)e2+GRDOTMP(1+3))
CALL GRDAVV (GROTMP(1e2)9GROTMP(1¢3)eGRDOTMP(1e3))
CALL GRDORV (204CeGRDTMP(193)eGRDTMP(193))
CALL CRDAVV (GRDTMP(1e1)s3RIOTMP(1¢3)¢GRDRES)
€O TO 3c00C

c ===== RETURN CODE =-—~-—-

30000 CONTINUE
CALL CROCPY (GRDRESeGRDRLT)
RETURN
END

COPY AVAILABLE TO DG DOES NOT
PERMIT FULLY LEGIBLE PRODUCTION
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Appendix C

Deck Arrangement

The data deck read by AUGMENT has the structure shown in tYhe

tollowing agiagram:

- — - e S G G e S R G e e G e e e e

/*BEGIN |
I ) |

- —— - —————— e - - e = - s G e -

/ bescripticn Deck /1|

At the conclusion of processing, the translated prooram decks

are in the output file in 80 column card imace format.

TThis page is taken out of: The AUGMENT Precompiler 1. User Information.
Fred Crary [3].

GAPY AVAILABLE TO DDC DAES NOY
PERMIT FULLY LEGIBLE PROGUCTION
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